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Abstract. We present a method of learning a Bayesian model of a traveler mov-
ing through an urban environment. This technique is novel in that it Simultane-
ously learns a unified model of the traveler's current mode of transportation as
well as his most likely route, in an unsupervised manner. The model is imple-
mented using particle filters and learned using Expectation-Maximization. The
training data is drawn from a GPS sensor stream that was collected by the au-
thors over aperiod of three months. We demonstrate that by adding more external
knowledge about bus routes and bus stops, accuracy isimproved.

1 Introduction

A centra theme in ubiquitous computing is building rich predictive models of human
behavior from low-level sensor data. One strand of such work concerns tracking and
predicting a person’s movements in outdoor settings using GPS [1-4]. But location is
only one small part of a person’s state. |deally we would want to recognize and predict
the high-level intentions and complex behaviors that cause particular physical move-
ments through space. Such higher-order models would both enabl e the creation of new
computing services that autonomously respond to a person’s unspoken needs, and sup-
port much more accurate predictions about future behavior at all levels of abstraction.

This paper presents an approach to learning how a person uses different kinds of
transportation in the community. We use GPS data to infer and predict a user’'s trans-
portation mode, such aswalking, driving, or taking abus. Thelearned model can predict
mode transitions, such as boarding a bus at one location and disembarking at ancther.
We show that the use of such a higher-level transportation model can also increase the
accuracy of location prediction, which is important in order to handle GPS signal loss
or preparing for future delivery of services.

A key to inferring high-level behavior is fusing a user’s historic sensor data with
general commonsense knowledge of real-world constraints. Real-world constraints in-
clude, for example, that buses only take passengers on or off at bus stops, that cars are
left in parking lots, and that cars and buses can only travel on streets, etc.. We present a
unified probabilistic framework that accountsfor both sensor error (in the case of GPS,
loss of signal, triangulation error, or multi-path propagation error) and commonsense
rules.

Although this work has broad applications to ubiquitous computing systems, our
motivating application is one we call the Activity Compass, a device which helpsguide
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acognitively impaired person safely through the community [5]. The system noteswhen
the user departs from a familiar routine (for example, gets on the wrong bus) and pro-
vides proactive alerts or calls for assistance. The Activity Compass is part of a larger
project on building cognitive assistants that use probabilistic models of human behavior
[6].

Our approach is built on recent successes in particle filters, a variant of Bayes fil-
ters for estimating the state of a dynamic system [7]. In particular we show how the
notion of graph-constrained particle filtering introduced in [8] can be used to integrate
information from street maps. Extensions to this technique include richer user trans-
portation state models and multiple kinds of commonsense background knowledge. We
introduce athree-part model in which alow-level filter continuously corrects systematic
sensor error, a particle filter uses a switching state-space model for different transporta-
tion modes (and further for different velocity bands within a transportation mode), and
a street map guides the particles through the high-level transition model of the graph
structure. We additionally show how to apply Expectation-Maximization (EM) to learn
typical motion patterns of humansin acompletely unsupervised manner. Thetransition
probabilitieslearned from real data significantly increase the model’s predictive quality
and robustnessto loss of GPS signal.

This paper is organized as follows. In the next section, we summarize the derivation
of graph-based tracking starting from the general Bayes filter, and show how it can be
extended to handle transportation mode tracking. Then, in Sect. 3, we show how to
learn the parameters of the tracking model using EM. Before concluding in Sect. 5,
we present experimental results that show we can learn effective predictive models of
transportation use behavior.

2 Tracking on a Graph

Our approach tracks a person’s location and mode of transportation using street maps
such asthe ones being used for route planning and GPS-based car tracking. More specif-
ically, our model of theworldisagraph G = (V, E) which hasaset V' of vertices and
aset F of directed edges. Edges correspond to straight sections of roads and foot paths,
and vertices are placed in the graph to represent either an intersection, or to accurately
model a curved road as a set of short straight edges. To estimate the location and trans-
portation mode of a person we apply Bayesfilters, aprobabilistic approach for estimat-
ing the state of a dynamic system from noisy sensor data. We will now briefly describe
Bayes filters in the general case, show how to project the different quantities of the
Bayes filter onto the structure represented in a graph, and then discuss our extensions
to the state space model.

2.1 Bayesian Filtering on a Graph

Bayesfilters address the problem of estimating the state x; of adynamical system from
sensor measurements. Uncertainty is handled by representing al quantities involved
in the estimation process using random variables. The key idea of Bayes filters is to
recursively estimate the posterior probability density over the state space conditioned
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on the data collected so far. The data consists of a sequence of observations z 1., and the
posterior over the state x; at time ¢ is computed from the previous state ;1 using the
following updaterule (see [7, 9] for details):

p(xe ] z1:0) < p(ze | @) /p(ﬂﬁt |zi—1) p(@i—1|21:0—1)d@i—1 (1)

Theterm p(z; | x:—1) isaprobabilistic model of the object dynamics, and p(z; | =)
describes the likelihood of making observation z; given the location x;.

In the context of location estimation, the state, x,, typically describes the position
and velocity of the object in 2D-space. When applying Bayesian filtering to agraph, the
state of an object becomesatriple z; = (e, d, v), wheree € E denotes on which edge
the object resides, d indicates the distance of the object from the start vertex of edge e,
and v indicates the velocity along the edge[8]. The motion model p(z ¢ | z;—1) considers
that the objects are constrained to motion on the graph and may either travel along an
edge, or, at the endpoint of the edge, switch to a neighboring edge. To compute the
probability of motion from one edge to another, the graph is annotated with transition
probabilities p(e; | e;), which describe the probability that the object transits to edge
e; given that the previous edge was e; and an edge transition took place. Without other
knowledge, this probability is auniform distribution over all neighboring edges of ¢ ;.

Our work builds on graph-based Bayesian tracking by hierarchically extending the
state model. We add a higher level of abstraction which contains the transportation
information and a lower level sensor error variable. The resulting state x ; consists of
the variables shown in Fig. 1. The presence of a bus stop near the person is given by
the binary variable b;, and the presence of a parking lot is modeled by c;. The mode of
transportation, denoted m,;, can take on one of three different values

my € {BUS, FOOT,CAR}.

v denotes the motion velocity, and the location of the person at time ¢ is represented
by I; = (e, d). o; denotes the expected sensor error, which in our current model com-
pensates for systematic GPS offsets. Finaly, at the lowest level of the model, raw GPS
sensor measurements are represented by gps, .

Tracking such a combined state space can be computationally demanding. Fortu-
nately, Bayes filters can make use of the independences between the different parts of
the tracking problem. Such independences are typically displayed in a graphical model
like Fig. 1. A dynamic Bayes net [10, 11], such as this one, consists of a set of vari-
ablesfor each time point ¢, where an arc from one variable to another indicates a causal
influence. Although al of the links are equivalent in their causality, Fig. 1 represents
causality through time with dashed arrows. In an abstract sense the network can be
as large as the maximum value of ¢ (perhaps infinite), but under the assumption that
the dependencies between variables do not change over time, and that the state space
conforms to the first-order Markov independence assumption, it is only necessary to
represent and reason about two time dlices at atime. In the figure the slices are num-
bered ¢t — 1 and ¢. The variables labeled gps are directly observable, and represent the
position and velocity readings from the GPS sensor (where a possible value for the
reading includes “loss of signal”). All of the other variables — sensor error, velocity,
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At Parking Lot At Bus Stop

GPS Reading

Fig. 1. Two-dlice dynamic Bayes net model of the transportation domain, showing dependencies
between the observed and hidden variables. Observed variables are shaded. Intra-temporal causal
links are solid, inter-temporal links are dashed.

user location, mode, and the presence of a parking lot or bus stop location — are hidden
variables whose values must be inferred from the raw GPS readings.

The dependencies between the nodes in Fig. 1 can be quite complex. The GPS
reading at each time point is influenced by the local sensor error and the user’s actual
velocity and location. The location at time ¢ only depends on the person’s previous lo-
cation and the motion velocity. Note that GPS is explicitly not considered to providethe
true user location; urban interference, map reference point errors, GPS error and sensor
failure all cause the true location to be a hidden variable. The sensor offset correction
node o, is used to reason about errors in the GPS readings which are systematic over
time and location. This node maintains a probability distribution over correctionsto the
GPS signal that are caused by multi-path propagation error and/or dynamic satellite ge-
ometry. The node updatesiits belief state by comparing GPS readings to the street map
to gradually adjust to local variationsin signal offset.

A more complex relationship governs how the mode of transportation influences
theinstantaneous vel ocity. Theinfluence of mode on velocity is complicated by the fact
that the range of possible instantaneous velocities for each mode overlap. For example,
movement at 7 km/hr may be a brisk walk or aslowly moving car or bus. To simplify the
relationship between mode and velocity we model the continuous velocities using the
Gaussian mixture shownin Fig. 2. A separate unsupervised Expectation-Maximization
(EM) process determined the parameters of these probability densities using real veloc-
ity data. Our model assumes that velocities are drawn randomly from these Gaussians,
where the probability of drawing from a particular Gaussian depends on the mode. For
example, the walking mode draws a speed from the left-most cluster with probability
one. In the bus mode, the person has a 1/3 chance of being in each of the three slow-
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Transportation Speed Modeling

I Foot, Bus and Car Speeds
[] Busand Car Speeds

I Busand Car Speeds

Bl Car Speeds

1200

g
=

3
<)

Frequency Count
5 8

200

18 37 55 73 91 110
Instantaneous Speed of a GPS Reading (km/hr)

128

Fig. 2. Gaussian mixture model for the dependency of transportation mode on velocities. The
Gaussians were learned using EM based on previously collected velocity data. The frequencies
of the raw velocity values are indicated by the bins. Different transportation modes are modeled
by sampling with different probability from the four Gaussians.

est velocity clusters. In our current approach, the probabilities for the Gaussians in the
different transportation modes were set manually based on external knowledge. Learn-
ing the weights of the mixture components depending on the transportation mode (and
eventually location) is left for future research.

In our model, the motion mode at time ¢ only depends on the previous mode and the
presence of a parking lot or bus stop. For example, the person can only get on a bus if
the node b, indicates the presence of a bus stop. The values of the bus stop and parking
lot nodes depend on the location of the person, as indicated by the arrows in the model
shown in Fig. 1. Learning mode and location transition probabilities is an important
aspect of our approach and will be discussed in Sect. 3.

2.2 ParticleFilter Based | mplementation

Particle filters provide a sample-based implementation of general Bayes filters [7].
They represent posterior distributions over the state space with temporal sets, S, of
n weighted samples:

Sy ={( gi),wf)> |i=1,...,n}

Here each xf) is a sample (or state), and the wt(” are non-negative numerical factors
called importance weights, which sum up to one. Like Kalman filters, particle filters
apply the recursive Bayes filter update to estimate posteriors over the state space, but
unlike Kalman filters, particle filters are not restricted to unimodal posterior distribu-
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tions *. The basic particle filter updates the posterior according to the following sam-
pling procedure, often referred to as sequential importance sampling with re-sampling
(SISR, seedso [7]):

— Sampling: Draw n sampIeSxf_)1 from the previous set and generate n new samples
29 using the distribution
px | w¢-1).

The new samples now represent the density given by the product

P(xt | $t71)}7($t71 | Z1:t71)

This density is the so-called proposal distribution used in the next step.
— Importance sampling: Assign each sample :cﬁ’ ) an importance weight according
to the likelihood of the observation, z,, given the sample,

wi’ = plz | 2.
— Re-sampling: Multiply / discard samples by drawing samples with replacement
according to the distribution defined through the importance weights w t(j ),

It can be shown that this procedure in fact approximates the Bayes filter update (1),
using a sample-based representation [7, 13].

The application of particle filters to the problem of location and mode estimation
using the network shown in Fig. 1 is rather straightforward. Each particle xf) repre-
sents an instantiation of the random variables describing the transportation mode m ,
the location [;, and the velocity v;. The parking lot and bus stop variables p; and b;
are extracted from each sample location ;. Findly, o; is determined globally for al
particles by estimating the offset between GPS readings and the street map. The up-
date steps of the particle filter can be implemented as follows. The temporal sampling
step corresponds to advancing each particle according to the motion model: First the
transportation mode is chosen according to the previous transportation mode and the
presence of bus stops or parking lots. This gives us m . Then we randomly pick a ve-
locity from the vel ocity model for the specific modem ;. Thevelocity is used to advance
the position of the person on the graph. If the sampled vel ocity impliesatransition to an-
other edge, the next edge e, is drawn with probability p(e; | e:—1,m:) (see[8] for more
information on edge transitions). After these sampling steps, the resulting states repre-
sent the predicted location, vel ocity, and transportation mode. The importance sampling
step is implemented by weighting each sample according to the likelihood of observ-
ing the current signal from the GPS sensor given the new location of the sample. The
re-sampling step of the particle filter algorithm does not have to be changed.

1 We consider multi-hypothesis tracking to be a viable alternative to our particle filter based
implementation. Multi-hypothesis tracking overcomes the restrictive assumption of the plain
Kaman filter by estimating a state using multiple Kalman filters [12]. An implementation of
such an approach will be part of our future research.
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3 Parameter Learning

One of the advantages of modeling the world with a graph is the ability to record be-
havioral data about edge transitions. The discrete nature of such transitions facilitates
unsupervised learning of hierarchical model parameters. We have an intuitive prior ex-
pectation of how state transitions occur between and within edges: edge transitions
occur uniformly among the edge’s neighbors, and mode transitions vary according to
the presence of a bus stop or parking lot.

Learningin this context means adjusting the model parametersto better fit the train-
ing data, typically to better model an individual user or the environment. Learning pa-
rameters for specific individuals captures idiosyncratic motion patterns — the move-
mentsthe user commonly makes, as opposed to thelogically possible set of movements.
Since our model also includes transportation mode, learning also means changing our
prior expectations about which edges mode transitions occur on. Bus stops and park-
ing locations are conceptual locations where mode transitions may occur. Our model
enables learning of the commonly used subset of these locations, to highlight where
a user frequently parks her car, for example. The learned model supports better track-
ing and prediction than the prior model, and is the foundation upon which high-level
understanding of the user’s behavior is built.

We now describe how to learn the parameters of our graph model using data col-
lected by a person moving through the community. Our motivating application of the
Activity Compass forces us to learn the transportation modes in an unsupervised man-
ner. When deployed, Activity Compass users must not be required, for example, to keep
adiary for several weeks of their transportation modes in order to create a supervised
training set. Hence, the most obviousdifficulty isthat we haveto learn the motion model
based solely on amap and a stream of non-continuous and noisy GPS sensor data.

A general approach for solving such learning problemsisthe well-known Expectation-
Maximization (EM) agorithm [14, 15]. In our application, EM is based on the obser-
vation that learning the model parameters would be easy if we knew the person’s true
location and transportation mode at any point intime. Unfortunately, location and trans-
portation mode are hidden variables, i.e. they cannot be observed directly but have to
be inferred from the raw GPS measurements. EM solves this problem by iterating be-
tween an Expectation step (E-step) and a Maximization step (M-step). In a nutshell,
each E-step estimates expectations (distributions) over the hidden variables using the
GPS observations along with the current estimate of the model parameters. Then in the
M-step the model parameters are updated using the expectations of the hidden variables
obtained in the E-step. The updated model isthen used in the next E-step to obtain more
accurate estimates of the hidden variables. EM theory tells us that in each iteration the
estimation of the parameterswill be improved and it will eventually convergeto alocal
optimum. In the following we give a more detailed description of how to apply EM
theory in our domain.

31 E-step:

Let © denote the parameters of the graph-based model we want to estimate and © (=1
denote the estimation thereof at the i — 1-th iteration of the EM algorithm. The model
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parameters contain all conditional probabilities needed to describe the dynamic system
shownin Fig. 1. The E-step estimates

p(x1 | 21,007 Y), %)

i.e. the posterior distribution over the trajectories of the person given the observations
and parameters updated in the previous iteration. Here x 1., and z;.; are the states and
observations, respectively. Since it is not possible to find a closed-form solution for
the posterior over x1.;, we have to resort to an approximate approach [ 16]. Observe that
when we do particlefiltering using the motion model with parameter © ‘1), the particle
distribution at each time ¢ along with the history of particles is an approximation for
p(z1.s | 21., 0~ 1)). Hence, the desired expectation can be computed using the graph-
based particle filter described in Sect. 2.2. Before we give implementation details for
the E-step, let us take a closer ook at the M-step.

32 M-step:

The goal of the M-step is to maximize the expectation of log p(z1.¢, x1.+ | ©) over
the distribution of x1., obtained in the E-step by updating the parameter estimations.
Because the distribution of x1.; is represented by the history of particles, the estimation
of the parameters at the i-th EM iteration is computed by summing over all trgjectories:

e — argmaleogp(zlrt’xgt) 1©)
e

j=1
-~ argglaxzaogpm |27)) + logp(z) |©)) (3)
j=1
n
= arggaleogmzz | O) (4)
j=1

Here, n is the number of particles, ngz is the state history of the j-th particle, and

(3) follows from the independence condition

plz1a | 2}, 0) = plara | 20)),

i.e., observations are independent of model transition parameters if the state trajectory
is known. For simplicity, we assume that al the particles have equal weight, i.e. after
they areresampled. It is straightforward to extend our derivation to the case of different
weights.

Our approach is in fact a direct extension of the Monte Carlo EM algorithm [17].
Theonly differenceisthat we allow particlesto evolve with time. It has been shown that
when the number of particlesn islarge enough, Monte Carlo EM estimation converges
to the theoretical EM estimation [16].
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3.3 Implementation Details

Even though EM can be used tolearn all parameters © of the model describedin Sect. 2,
we are mostly interested in learning those parts of the model that describe the typical
motion patterns of a user. All other parameters are fixed beforehand and not adjusted to
a specific user. An advantage of this approach isthat it requires much less training data
than learning all parameters at once.

The motion patterns of a specific user are described by the location transitions on
the graph and the mode transitions at the different locations. For the learning process,
we haveto initialize these probabilities to some reasonable values:

ple: | er—1,my—1) isthe transition probability on the graph conditioned on the mode
of transportation just prior to transitioning to the new edge. This conditional prob-
ability is initialized to a uniform distribution across all outgoing edges, with the
exception of bus routes which have a strong bias forcing buses to follow the route
(bus routes can be obtained from GIS sources such as [18]). With this exception,
our model has no preference for a specific path of the person.

p(my | me—1,e:—1) isthe modetransition probability. This probability depends on the
previous mode m;_, and the location of the person, described by the edgee ;.
For example, each person has typical locations where she gets on and off the bus.
Mode transitions are initialized with commonsense knowledge (e.g., one may not
switch from a bus to a car without first being on foot), and with knowledge of bus
stops. Parking lots are uniformly distributed across our map with no biases toward
actual parking lots.

A straightforward implementation of the E-step givenin (2) isto generate the expecta-
tion over state trgjectories by storing the history of each particle (see [7] for a discus-
sion). To do so, at each re-sampling phase, the history of old samples needsto be copied
to the new samples 2. Then at the last time step, we have a set of samples with their his-
tories. At the M-step, we update the model parameters simply by counting over the
particle histories. For example, to get p(e; | e;, BU.S), we count the number of times
when aparticlein BU S modetransits from edge e ; to e; and then normalize the counts
over al edgesfollowing e; and BU S. This approach, although easy to implement, suf-
fersfromtwo drawbacks. First, it is not efficient. When the datalogisfairly long, saving
the histories for al the particles needs a large amount of space and history replication
becomes slow. Second, and more importantly, since the number of samplesisfinite, the
repetition of the re-sampling will gradually diminish the number of different histories
and eventually decrease the accuracy of the particle based approximation [7].

We can overcome these problems by observing that we are only interested in learn-
ing the discrete transitions between edges and modes, e.g., the probability of transiting
from edge e; to edge e; in BUS mode. The discreteness of these transitions allows
us to apply the well-known Baum-Welch algorithm [15], an EM agorithm for hidden
Markov models (HMM). The Monte Carlo version of the Baum-Welch algorithm [19]
performs at each iteration both a forward and a backward (in time) particle filtering

2 Unnecessary copy operations can be avoided by using tree data structures to manage pointers
describing the history of particles.
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step. At each forward and backward filtering step, the algorithm counts the number of
particles transiting between the different edges and nodes. To obtain probabilities for
the different transitions, the counts of the forward and backward pass are normalized
and then multiplied at the corresponding time slices.

To show how it works, we define:

at(er, m¢) isthenumber of particleson edge e, andin modem, at timet intheforward
pass of particlefiltering.

B¢(er, my) isthe number of particles on edge e; and in mode m; at time ¢ in the back-
ward pass of particlefiltering.

&—1(et, e—1,my—1) isthe probability of transiting fromedgee,_; toe; atimet — 1
and inmode m;_1.

Wi—1(my, my—1,e4—1) is the probability transiting from mode m,_; to m; on edge
ei_q atimet — 1.

A short derivation gives us [15, 19],

ft—l(et,et—l,mt—ﬂ X Oét—1(€t—17mt—1)p(€t | et—lamt—l)ﬁt(et,mt—ﬂ (5

and

1/’t—1(mt7mt—17€t—1) X at—l(et—l,mt—l)p(mt | mt—h@t—l)ﬁt(et—l,mt) (6)

After we have &;_, and ¢, for al the ¢ from 2 to T', we update the parameters
as 8
expected number of transitionsfrome;_1 to e; in mode m;_1
expected number of transitionsfrome;_; in mode m;_1

_ Ethg ft—l(em €t—1, mt—l) (7)

- T
Et:Q Zet E€Neighbors of e;_1 -1 (et7 €t—1, mt—l)

P(et | etflamtfl) =

and similarly

expected number of transitionsfrom m,_; to m,; onedgee;_;
expected number of transitionsfromm;_; onedgee;_1

_ ZtT=2 Ye1(me, my—1,€4-1) ©®)

- T
D2 the{BUS,FOOT,CAR} Yr—1(my, my—1, €4-1)

p(mt | mt—h@t—l) =

The complete implementation is depicted in Table 1. As the number of particles
increases, the approximation converges to the theoretical EM estimation. Fortunately,
our approach is very efficient in this regard, since our model parameters are associated
with the number of edges and modes in the graph, not the number of particles.

In addition to the user specific parameters our model requires the specification of
other parameters, such as motion velocity and the GPS sensor model. The motion ve-
locity ismodeled as a mixture of Gaussians from which velocities are drawn at random.

3 Usually we also need a prior number for each transition. We will not discuss how to set the
prior value in this paper.

10
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Table 1. EM-based parameter learning algorithm

Modé Initialization: Initialize the model parameters p(et|et—1, m:—1) and p(me¢|me—1, e:—1).
E-step:

1. Generate n uniformly distributed samples and set timet = 1.
2. Perform forward particle filtering:
(8 Sampling: generate n new samples from the existing samples using the current param-
eter estimation p(e¢|et—1, m¢—1) and p(my|me—1,€¢—1).
(b) Importance sampling: reweight each sample based on observation z:.
(©) Re-sampling: multiply / discard samples according to their importance weights.
(d) Count and save o (er, m:)
(e) Sett =1t+ 1 and repest (2a)-(2d) until ¢ = T'.
3. Generate n uniformly distributed samplesand set ¢t = 7.
4. Perform backward particle filtering:
(@ Compute backward parameters  p(ei—1le:, mt),  p(mi—i|me,e:)  from
pletlet—1,me—1) and p(rmu|mi—1, er—1)
(b) Sampling: generate n new samples from the existing samples using the backward pa-
rameter estimation.
(c) Importance sampling: reweight each sample based on observation z.
(d) Re-sampling: multiply / discard samples according to their importance weights.
(e) Count and save (:(et, m+)
(f) Sett =1t — 1 and repeat (4b)-(4e) until ¢t = 1.

M-step

1. Compute &:—1(et, et—1, me—1) and Ye—1(my, me—1, e:—1) using (5) and (6) and then nor-
malize.
2. Update p(et|et—1, me—1) and p(me¢|me—1, e:—1) using (7) and (8).

L oop Repeat E-step and M-step using updated parameters until model converges.

The probabilities of the mixture components depend on the current motion mode and
can be learned beforehand using data |abeled with the correct mode of motion. We use
astandard model to computethe likelihood p(z; | ;) of a GPS sensor measurement z,
given the location x, of the person [1].

4 Experiments

Our test data set consists of logs of GPS data collected by one of the authors. The data
contains position and velocity information collected at 2-10 second intervals during
periods of time in which the author was moving about outdoors. This data was hand
labeled with one of three modes of transportation: foot, bus, or car. This labeling was
useful for validating the results of our unsupervised learning, but was not used by the
EM learning process.

From this data set, we chose 29 episodes representing a total of 12 hours of logs.
This subset consists of al of portions of the data set which were bounded by GPS sig-
nal loss, i.e. had no intermediate loss of signal of more than 30 seconds, and which

11
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Fig. 3. Car (left), Foot (middie), and Bus (right) training data used for experiments. The black dot
is acommon map reference point on the University of Washington campus.

contained a change in the mode of transportation at some point in the episode. These
episodes were divided chronologically into three groups which formed the sets for
three-fold cross-validation for our learning. Fig. 3 shows one of the cross-validation
groups used for training. The street map was provided by the US Census Bureau [20]
and the locations of the bus stops come from the King County GI S office [18].

4.1 ModeEstimation and Prediction

One of the primary goals of our approachis|earning amotion model that predictstrans-
portation routes, conditioned on the mode of transportation. We conducted an experi-
ment to validate our models' ability to correctly learn the mode of transportation at any
given instant. For comparison we also trained a decision tree model using supervised
learning on the data [21]. We provided the decision tree with two features: the current
velocity and the standard deviation of the velocity in the previous sixty seconds. Using
the data annotated with the hand-label ed mode of transportation, thetask of the decision
tree was to output the transportation mode based on the velocity information. We used
three-fold cross-validation groups to evaluate all of the learning algorithm. The results
aresummarized in thefirst row of Table 2. Thefirst result indicatesthat 55% of thetime
the decision tree approach was able to accurately estimate the current mode of trans-
portation on the test data. Next, we used our Bayes filter approach without learning the
model parameters, i.e. with uniform transition probabilities. Furthermore, this model
did not consider the locations of bus stops or bus routes (we never provided parking
locations to the algorithm). In contrast to the decision tree, the Bayes filter algorithm
integrates information over time, thereby increasing the accuracy to 60%. The benefit
of additionally considering bus stops and bus routes becomes obvious in the next row,
which shows amode accuracy of 78%. Finally, using EM to learn the model parameters
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increases the accuracy to 84% of the time, on test data not used for training. Note that
this valueis very high given the fact that often a change of transportation mode cannot
be detected instantaneously.

Table 2. Mode estimation quality of different algorithms.

Model Cross-Validation
Prediction Accuracy
Decision Tree with Speed and Variance 55%
Prior Graph Model, w/o bus stops and bus routes 60%
Prior Graph Model, w/ bus stops and bus routes 78%
Learned Graph Model 84%

A similar comparison can be done looking at the techniques' ability to predict not
just instantaneous modes of transportation, but also transitions between transportation
modes. Table 3 shows each technique’s accuracy in predicting the qualitative changein
transportation mode within 60 seconds of the actual transition — for example, correctly
predicting that the person got off abus. Precision is the percentage of time when the al-
gorithm predicts atransition that an actual transition occurred. Recall is the percentage
of real transitions that were correctly predicted. Again, the table clearly indicates the
superior performance of our learned model. Learning the user’s motion patterns signifi-
cantly increases the precision of mode transitions, i.e. the model is much more accurate
at predicting transitions that will actually occur.

Table 3. Prediction accuracy of mode transition changes.

| Model |Precision|Recall]
Decision Tree with Speed and Variance 2% 83%
Prior Graph Model, w/o bus stops and busroutes 6% 63%
Prior Graph Model, w/ bus stops and busroutes| 10% | 80%
Learned Graph Model 40% | 80%

An exampl e of the modes of transportation predicted after training on one cross-validation
set isshown in Fig. 4.

4.2 Location Prediction

The location prediction capabilities of our approach areillustrated in Fig. 5 and 6. In
Fig. 5, the learned model was used to predict the location of the person into the fu-
ture. This was done by providing the ground truth location and transportation mode to
the agorithm and then predicting the most likely path based on the transition proba-
bilities learned from the training data. The figure shows the percentage of trgjectories
that were predicted correctly, given different prediction horizons. Prediction length was
measured in city blocks. For example, in 50% of the cases, the location of the person
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Fig.4. This map shows the learned transportation behavior based on one cross-
validation set containing nineteen episodes. Shown are only those edges and mode
transitions which the learned model predicts with high probabilities. Thick gray lines
indicate learned bus routes, thin black lines indicate |earned walking routes, and cross-
hatches indicate learned driving routes. Circles indicate parking spots, and the triangles
show the subset of bus stops for which the model learned a high probability transi-
tion on or off the bus. There are four call-outs to show detail. (A) shows a frequently
traveled road ending in three distinct parking spaces. This route and the parking spots
indicatethe correctly learned car trips between the author’shome and church. (B) shows
a frequently traveled foot route which enters from the northeast, ending at one of the
frequently used bus stops of the author. The main road running east-west is an arterial
road providing access to the highway for the author. (C) shows an intersection at the
northwest of the University of Washington campus. There are two learned bus stops.
The author frequently takes the bus north and south from this location. This is also
a frequent car drop off point for the author, hence the parking spot indication. Walk-
ing routes extend west to a shopping area and east to the campus. (D) shows a major
university parking lot. Foot traffic walks west toward campus.
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Predicting Future Location Given Transportation Mode
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Fig. 5. Location prediction capabilities of the learned model.
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Fig. 6. Location and mode prediction capabilities of the learned model.

was predicted correctly for 17 blocks when the person was on the bus. In 30% of the
cases, the prediction was correct for 37 blocks, and 75 blocks were predicted correctly
in 10% of the cases. Note that the linear drop in bus route prediction probability is due
to thefact that the data contained several correctly predicted episodes of a 92 block long
bus trip. Obviously, long term distance prediction is much less accurate when a person
walks. This is due to the higher variability of walking patterns and the fact that peo-
ple typically do not walk for many city blocks, thereby making along term prediction
impossible.

In Fig. 6, the learned model was used to predict both the location and the trans-
portation mode of the person into the future. This was done by providing the ground
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truth location to the algorithm and then predicting the most likely path and sequence
of transportation mode switches based on the transition probabilities learned from the
training data. The graph shows that in 50% of the cases, the model is able to correctly
predict the motion and transportation mode of the person for five city blocks. This re-
sult is extremely promising given that the model was trained and tested on subsets of
29 episodes.

5 Conclusions and Future Work

Thework presented in this paper helpslay the foundation for reasoning about high-level
descriptions of human behavior using sensor data. We showed how complex behaviors
such as boarding a bus at a particular bus stop, traveling, and disembarking can be
recognized using GPS data and general commonsense knowledge, without requiring
additional sensors to be installed throughout the environment. We demonstrated that
good predictive user-specific models can be learned in an unsupervised fashion.

The key idea of our approach is to apply a graph-based Bayes filter to track a per-
son’'s location and transportation mode on a street map annotated with bus route infor-
mation. Thelocation and transportation mode of the personis estimated using aparticle
filter. We showed how the EM agorithm along with frequency counts from the parti-
cle filter can be used to learn a motion model of the user. A main advantage of this
unsupervised learning algorithm is the fact that it can be applied to raw GPS sensor
data.

The combination of general knowledge and unsupervised learning enables a broad
range of “self-customizing” applications, such as the Activity Compass mentioned in
Sect. 1. Furthermore, it is straightforward to adopt this approach for “lifelong” learning:
the user never needs to explicitly instruct the device, yet the longer the user carries the
device the more accurate its user model becomes.

Our current and futureresearch extendsthe work described in this paper in anumber
of directions, including the following:

1. Making positive use of negative information. Loss of GPS signal during tracking
causes the probability mass to spread out as governed by the transition model. We
have seen that learning significantly reducestherate of spread. In some cases, how-
ever, loss of signal can actually be used to tighten the estimation of the user’sloca-
tion. In particular, most buildings and certain outdoor regions are GPS dead-zones.
If signal islost when entering such an area, and then remains lost for a significant
period of time while the GPS device is active, then one can strengthen the proba-
bility that the user has not |left the dead-zone area.

2. Learning daily and weekly patterns. Our current model makes no use of absolute
temporal information, such as the time of day or the day of the week. Including
such variables in our model will improve tracking and prediction of many kinds
of common life patterns, such as the fact that the user travels towards his place of
work on weekday mornings.

3. Modeling trip destination and purpose. The work described in this paper segments
movement in terms of transitions at intersections and between modes of transporta-
tion. At a higher level of abstraction, however, movement can be segmented in
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terms of trips that progress from a location where some set of activities take place
(such as home) to a location where a different class of activities take place (such
as the office). A single trip between activity centers can involve several shifts be-
tween modes of transportation. By learning trip models we expect to be able to
increase the accuracy of predictions. More significantly, trip models provide away
to integrate other sources of high-level knowledge, such as a user’'s appointment
calendar.

Using relational models to make predictions about novel events. A significant lim-
itation of our current approach is that useful predictions cannot be made when
the user isin a location where she has never been before. However, recent work
on relational probabilistic models [22, 23] develops a promising approach where
predictions can be made in novel states by smoothing statistics from semantically
similar states. For example, such a model might predict that the user has a signifi-
cant chance of entering anearby restaurant at noon even if thereis no history of the
user patronizing that particular restaurant.
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