
Voronoi Tracking: Location Estimation Using Sparse and Noisy Sensor Data
Lin Liao, Dieter Fox, Jeffrey Hightower, Henry Kautz, and Dirk Schulz

Deptartment of Computer Science & Engineering
University of Washington

Seattle, WA

In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), 2003.

Abstract
Tracking the activity of people in indoor environments

has gained considerable attention in the robotics commu-
nity over the last years. Most of the existing approaches
are based on sensors which allow to accurately determine
the locations of people but do not provide means to distin-
guish between different persons. In this paper we propose
a novel approach to tracking moving objects and their iden-
tity using noisy, sparse information collected by id-sensors
such as infrared and ultrasound badge systems. The key
idea of our approach is to use particle filters to estimate
the locations of people on the Voronoi graph of the envi-
ronment. By restricting particles to a graph, we make use
of the inherent structure of indoor environments. The ap-
proach has two key advantages. First, it is by far more effi-
cient and robust than unconstrained particle filters. Second,
the Voronoi graph provides a natural discretization of hu-
man motion, which allows us to apply unsupervised learn-
ing techniques to derive typical motion patterns of the peo-
ple in the environment. Experiments using a robot to col-
lect ground-truth data indicate the superior performance of
Voronoi tracking. Furthermore, we demonstrate that EM-
based learning of behavior patterns increases the tracking
performance and provides valuable information for high-
level behavior recognition.

1 Introduction
Over the last years, the estimation of the location of peo-
ple in indoor environments has gained increased attention
in the robotics community [5; 13; 9]. This is mainly due
to the fact that knowledge about the positions and mo-
tion patterns of people can help mobile robots to better
interact with people, as stated in [1]. Most existing ap-
proaches to people tracking rely on laser range-finders [5;
1; 13] or cameras [9]. A key advantage of these sensors is
their location accuracy. Unfortunately, they do not provide
information about the identity of people. Recently, espe-
cially the ubiquitous computing community has started to
equip indoor environments with networks of sensors that
are capable of providing information about a person’s loca-
tion and identity [8]. Such sensors, however, have the dis-
advantage that they provide only relatively coarse location
information. In addition to being corrupted by noise, such
sensors provide measurements at low frame rates only.

Even though id-sensors do not allow accurate position
estimation, they can be used to keep track of a person’s
location at a more abstract level such as which room or

hallway she is in. Such discrete, abstract location informa-
tion additionally provides an ideal representation for learn-
ing patterns in a person’s long term behavior. In contrast,
pattern discovery in continuous space trajectories often re-
quires supervised learning methods [1].

Based on these observations, we introduce a novel ap-
proach to estimating the locations of people using sparse
and noisy sensor data collected by id-sensors. The key
idea of our approach is to track the locations of people
on Voronoi graphs [3], which allow us to naturally rep-
resent typical human motion along the main axes of the
free space. The estimated trajectories on the Voronoi graph
help us to bridge the gap between continuous sensor data
and discrete, abstract models of human motion behavior.
In contrast to existing localization approaches using dis-
crete, abstract representations [14; 3], our method provides
accurate estimates along the continuous edges of the graph.
We introduce a two-level approach in which a particle filter
uses a switching state space model for human motion, and
the Voronoi graph guides the particles through the high-
level transition model of the graph structure. We addition-
ally show how to apply EM to learn typical motion pat-
terns of humans in a completely unsupervised manner. The
transition probabilities learned from real data significantly
increase the tracking quality of the approach. Our experi-
ments show that tracking on the Voronoi graph significantly
outperforms particle filters in the unconstrained state space
(arbitrary position and orientation).

This paper is organized as follows. In the next section,
we will derive Voronoi tracking starting from the general
Bayes filter. Then, in Section 3, we show how to learn the
parameters of the tracking model using expectation max-
imization. Before concluding in Section 5, we show ex-
perimental results supporting the superior performance of
Voronoi tracking.

2 Voronoi Tracking
We define a Voronoi graph G = (V, E) by a set V of
vertices vi and a set E of directed edges ej . Figure 1(a)
shows the Voronoi graph representing the Intel Research
Lab Seattle, our indoor testing environment. Note that this
graph results from manual pruning of the original Voronoi
graph [3] and that for clarity only the undirected version of
the graph is shown.

In the following we phrase the problem of location es-
timation on Voronoi graphs as a special case of Bayesian
filtering, on which virtually all probabilistic location esti-

(a) (b) (c) (d)
Figure 1: Voronoi graphs for location estimation: (a) Indoor environment along with manually pruned Voronoi graph. Shown are also the
positions of ultrasound Crickets (circles) and infrared sensors (squares). (b) Patches used to compute likelihoods of sensor measurements.
Each patch represents locations over which the likelihoods of sensor measurements are averaged. (c) Likelihood of an ultra-sound cricket
reading (upper) and an infrared badge system measurement (lower). While the ultra-sound sensor provides rough distance information,
the IR sensor only reports the presence of a person in a circular area. (d) Corresponding likelihood projected onto the Voronoi graph.

mation approaches are based. We will start by describing
general Bayes filters for the full continuous state space, and
we will then show how to project the different quantities of
the Bayes filter onto the topological structure represented
in a Voronoi graph.

2.1 Bayesian Filtering on a Voronoi Graph
Bayes filters estimate posterior distributions over the state
xt of a dynamical system conditioned on all sensor infor-
mation collected so far:

p(xt |z1:t) ∝ p(zt |xt)

∫

p(xt |xt−1) p(xt−1 |z1:t−1)dxt−1 (1)

Here z1:t is the history of all sensor measurements obtained
up to time t. In the context of location estimation, the state
typically describes the position and velocity of the object
in 〈x, y, θ〉-space. The term p(xt | xt−1) is a probabilistic
model of the object dynamics, and p(zt | xt) describes the
likelihood of making observation zt given the location xt

and a map of the environment.
Let us now describe how to implement the recursive

Bayes filter for Voronoi graphs. We represent the state
xt of an object by a triple x = 〈e, d, m〉, where e de-
notes the current edge on the graph, d indicates the dis-
tance of the object from the start vertex of edge e, and
m ∈ {stopped, moving} indicates the current motion state
of the object. A straightforward implementation of the ob-
servation model for Voronoi graphs would be to simply
compute the likelihood of observations for positions on the
graph. However, this is not a valid approach since it does
not consider the fact that the Voronoi graph projects the 3d
state space onto the one-dimensional graph G. Hence, to
compute the likelihood of an observation z given a position
x on the graph, we have to integrate over all 3d positions
projected onto x:

p(z|x) =

∫

ν∈S(x)

p(z | ν) p(ν | x) dν, (2)

Here, S(x) denotes the set of all positions ν projected onto
x. In the limit, S(x) are the states on the line from x to the
closest objects defining the Voronoi graph. In our imple-
mentation of the sensor model, we discretize positions on

the graph, which results in location patches S(x), as illus-
trated in Figure 1(b)–(d).

The motion model p(xt | xt−1) has to take into account
that the objects are constrained to moving on the graph.
Here, we adopt a switching state model approach based
on the assumption that objects either do not move at all
(mt = stopped), or move (mt = moving) 1 with a veloc-
ity v governed by a Gaussian process with mean v variance
σ2

v . Additionally, have to consider motion along an edge
of the Voronoi graph as well as motion from one edge to
another. Let us first describe the simpler case of motion on
one edge, which we denote p̂(xt | xt−1):

p̂(xt |xt−1) = p(mt = move |mt−1) · N
(

xt − xt−1

∆t
; v, σv

)

+p(mt = stopped |mt−1) · δ(xt, xt−1) (3)

Here, δ(xt, xt−1) is the Dirac delta function which is 1,
if xt = xt−1 and 0 otherwise. In Section 3 we will show
how to use data to learn p(mt |mt−1), the switching be-
tween motion states. xt − xt−1 denotes the distance func-
tion on the Voronoi graph. It can be defined as

xj − xi =

{

dj − di if ei = ej

|ei| − di + dj otherwise
(4)

The term |ei| − di + dj computes the distance to the end
of edge ei plus the distance dj on the next edge. For clar-
ity, we restrict the definition to the case of motion between
neighboring edges ei and ej , but it can easily be extended
to the general case of multi-edge motion steps.

To compute the probability of motion from one edge to
another, we assume that the Voronoi graph is annotated
with transition probabilities p(ej |ei), which describe the
probability that the object transits to node ej given that the
previous node was ei and an edge transition took place.
Without prior knowledge, this probability is distributed
uniformly over all neighboring edges of ei. Combining this
graph transition model with the single edge motion model

1While this model might seem too simplistic, our experiments
indicate that it yields good results and the extension to more com-
plex motion models is possible.

given in (3), we get the model for motion on the graph:

p(xt |xt−1) =

{

p̂(xt | xt−1) if et = et−1

p(et |et−1) p̂(xt | xt−1) if et 6= et−1
(5)

This finalizes our description of how general state space
Bayes filters can be projected onto Voronoi graphs. In the
next section we will describe how to implement this graph-
based model using particle filters.

2.2 Particle Filter Based Implementation
Particle filters provide a sample-based implementation of
general Bayes filters [6; 4]. The key idea of particle filters
is to represent posteriors over the state xt by sets St of n
weighted samples:

St = {〈x
(i)
t , w

(i)
t 〉 | i = 1, . . . , n}

Here each x
(i)
t is a sample (or state), and the w

(i)
t are

non-negative numerical factors called importance weights,
which sum up to one. Just like Kalman filters, particle fil-
ters apply the recursive Bayes filter update to estimate pos-
teriors over the state space. The basic form of the particle
filter updates the posterior according to the following sam-
pling procedure, often referred to as sequential importance
sampling with re-sampling (SISR, see also [4]):
Re-sampling: Draw with replacement a random sample
x

(i)
t−1 from the sample set St−1 according to the (discrete)

distribution defined by the importance weights w
(i)
t−1.

Sampling: Use x
(i)
t−1 to sample x

(j)
t from the distribution

p(xt | xt−1). x
(j)
t now represents the density given by the

product p(xt | xt−1)p(xt−1 | z1:t−1). This density is the
so-called proposal distribution used in the next step.
Importance sampling: Weight the sample x

(j)
t by the im-

portance weight p(zt | x
(j)
t), the likelihood of the measure-

ment zt given the state x
(j)
t .

Each iteration of these three steps generates a sample
drawn from the posterior density. After n iterations, the
importance weights of the samples are normalized so that
they sum up to 1. It can be shown that this procedure in fact
approximates the Bayes filter update (1), using a sample-
based representation [4].

The application of particle filters to location estimation
on a Voronoi graph is rather straightforward. The resam-
pling step does not have to be changed at all. Sampling
the motion update has to be done according to (3)–(5). To
do so, recall that the state xt−1 contains the position on
the graph along with the motion state mt−1. Let us begin
with (3). We first sample the motion state mt with probabil-
ity proportional to p(mt | mt−1). If mt = moving, then we
randomly draw the traveled distance d from the Gaussian
distribution given in (3). For this distance d, we have to
determine whether the motion along the edge results in a
transition to another edge. If not, then dt = dt−1 + d and
et = et−1. Otherwise, dt = d − |et−1| + dt−1 and the
next edge et is drawn with probability p(et | et−1). Oth-
erwise, if the motion state mt = stopped, the position xt

is set to be xt−1. After these sampling steps, the resulting
states are distributed according to p(xt | xt−1). The im-
portance sampling step of the particle filter is implemented
by weighting each sample proportional to the projected ob-
servation likelihood as given in (2).

To summarize, we described how to perform recursive
Bayesian filtering by projecting the general Bayes filter
onto Voronoi graphs, followed by a sample-based imple-
mentation. In the next section, we will describe how to
learn the motion patterns of individual people.

3 Parameter Learning
One of the key applications of graph-based location esti-
mation is the collection of long-term data so as to learn
behavior models of individual people. Learning parame-
ters for a specific person not only increases the accuracy
of tracking, but also allows us to understand different mo-
tion patterns for different people. As a first step in this
direction, we will now describe how to learn the parame-
ters of our Voronoi model using data collected by an object
moving through the environment. The parameters Θ of the
model consist of the transition probabilities on the Voronoi
graph, p(ei | ej), the switching parameters of the motion
model, p(mt | mt−1), and the Gaussian motion parameters
(v, σ2

v).2 To learn these parameters from data, we need an
estimate of the robot’s location at each point in time. Un-
fortunately, these positions are not directly observable but
have to be estimated from the sensor data. To solve this
problem, we apply the EM (Expectation-Maximization) al-
gorithm [12], which is the most widely used approach to
solving learning problems with missing features. EM is
an iterative algorithm which has an E-step and an M-step
at each iteration. In a nutshell, each E-step estimates the
trajectory of the person through the environment. This is
done using the Voronoi tracking approach along with the
model parameters learned in the previous iteration of EM.
The particle trajectories of the E-step are used to generate
counts for transitions on the graph. These transition counts
are then used in the M-step to update the model parameters.

3.1 E-Step:
In the E-step, we update the posterior distribution over the
trajectories of the person and compute the expectation of
the log-likelihood (see [12; 10] for details). We define:

Q(Θ, Θ(i−1)) (6)
= E[log p(z1:t, x1:t | Θ) | z1:t, Θ

(i−1)]

=

∫

x1:t

log p(z1:t, x1:t |Θ)p(x1:t |z1:t, Θ
(i−1))dx1:t (7)

Here x1:t and z1:t are the sequences of states and obser-
vations, respectively. Θ are the parameters of the Voronoi
graph-based model we want to estimate and Θ(i−1) are the
estimation thereof at the i − 1-th iteration of the EM al-
gorithm. The difficulty here is to estimate the second term

2We do not learn the observation likelihood (2), since it can be
extracted directly from the general model of the sensors.

of (7), which is the posterior distribution over state trajec-
tories x1:t given observations z1:t and model parameters
Θ(i−1). To estimate these trajectories, we do particle fil-
tering using the motion and graph transition model with
parameter Θ(i−1). Smoothing of the trajectories is done by
performing a forward and a backward filtering pass through
the data. Then we multiply the counts resulting from the
two distributions at corresponding time slices, which cor-
responds to the Baum-Welch algorithm widely used for
Hidden Markov Models [12]. The resulting estimate is
a sample-based approximation for p(x1:t | z1:t, Θ

(i−1)).
More specifically, (7) is approximated by

Q(Θ, Θ(i−1)) ≈
1

m

m
∑

j=1

log p(z1:t, x
(j)
1:t |Θ), (8)

where m is the number of particles and x
(j)
1:t is the state his-

tory of the j-th particle, estimated using the data. For sim-
plicity, we assume that all the particles have equal weight,
i.e. after they are resampled. It is straightforward to extend
our derivation to the case of different weights.

Knowing the state of the particles at the different points
in time, it is straightforward to extract information needed
for the M-step. The graph transition parameters p(et |et−1)
can be estimated by counting the number of particles that
move from one edge ei to another edge ej . To generate
such counts, we discretize time into intervals of equal size
∆t and sum the number of transitions during each interval.
We additionally generate counts for mijk(t), the number of
particles on edge ei that switch from one motion state mj

into another other motion state mk. The reason for learning
different switching models for each edge is that we want
to be able to determine where a person typically stops for
extended periods of time. To estimate the parameters of
the Gaussian motion model, we store the velocities of all
samples that are in the “moving” state. The generation of
counts turns out to be very efficient since at each time we
only need to save the aggregate information for each edge,
not for each particle.

Our approach is in fact very similar to the Monte Carlo
EM algorithm [16]. The only difference is that we allow
particles to evolve with time. It has been shown that when
m is large enough, Monte Carlo EM estimation converges
to the theoretical EM estimation [10].

3.2 M-step:
The goal of the M-step is to maximize the expectation we
computed in the E-step by updating the parameter estima-
tions. From (8), we have:

Θ(i) = argmax
Θ

Q(Θ, Θ(i−1))

= argmax
Θ

m
∑

j=1

log p(z1:t, x
(j)
1:t | Θ)

= argmax
Θ

m
∑

j=1

(log p(z1:t |x
(j)
1:t) + log p(x

(j)
1:t |Θ))(9)

0 2 4 6 8 10 12
Distance (m)

p(
z

| d
is

ta
nc

e)

Versus infrared sensor
Cricket ultrasound sensor

Figure 2: Sensor model of ultrasound crickets and infrared
badge system. The x-axis represents the distance from the detect-
ing infrared sensor and ultrasound sensor (4m ultrasound sensor
reading), respectively. The y-axis gives the likelihood for the dif-
ferent distances from the sensor.

= argmax
Θ

m
∑

j=1

log p(x
(j)
1:t | Θ) (10)

Here, (9) follows from the independence condition p(z1:t |

x
(j)
1:t , Θ) = p(z1:t | x

(j)
1:t), i.e. observations are independent

of model parameters if the state trajectory is known. To
maximize the parameter set Θ, the M-step essentially con-
verts the frequency counts obtained in the E-step into prob-
abilities. The parameters of the Gaussian motion model are
the mean and variance of the velocity values.

To summarize, EM iterates between an expectation step,
which estimates the trajectory of the person using particle
filtering forwards and backwards through the data set. The
trajectories are used to count the transitions of particles on
the Voronoi graph, the switching between motion modes,
and the velocities of particles. These values are then con-
verted into probabilities during the M-step, which gener-
ates a new model estimate. The updated model is then
used in the next iteration to re-estimate the trajectory of the
person. For the first E-step, we initialize θ(0) with some
reasonable values using background knowledge of typical
human motion and a uniform distribution for the outgoing
edges at each vertex of the Voronoi graph. The algorithm
stops if Θ(i) and Θ(i−1) are close enough.

4 Experiments
We evaluated the performance of the Voronoi tracking (VT)
approach based on data recorded at the Intel Research Lab
Seattle (Figure 3). The office environment is equipped with
two different kinds of id sensors: 73 Versus infrared re-
ceivers which provide information about the presence of a
person in the vicinity of a sensor, and three Cricket ultra-
sound receivers, which provide identity and distance esti-
mates (see [8] and references therein). Figure 2 shows a
model of the uncertainty of the two sensor types. Both sen-
sors suffer from a high probability of false-negative read-
ings, i.e. they frequently fail to detect a person.

(a) (b) (c) (d)
Figure 3: (a) Trajectory of the robot during a 25 minute period of training data collection. True path (in light color) and most likely
path as estimated using (b) Voronoi tracking and (c) original particle filters. (d) Motion model learned using EM. The arrows indicate
those transitions for which the probability is above 0.65. Places with high stopping probabilities are represented by disks. Thicker arcs
and bigger disks indicate higher probabilities.

0 200 400 600 800 1000
0

2

4

6

8

10

Number of particles

Av
er

ag
e

er
ro

r (
m

)

Particle filtering
Voronoi tracking

Figure 4: Localization error for different numbers of samples.

To generate data for which ground truth is available, we
equipped a mobile robot with two Versus badges, a Cricket
beacon, and additionally with a Sick laser range-finder.
Our experiment is based on a 35-minute-long log of sen-
sor measurements received while driving the robot through
the environment. The robot moved at an average velocity
of 30 cm/s and was stopped at designated resting places.
The laser range-finder allowed us to accurately estimate the
path of the robot using the map shown in Figure 1(a).

As an initial test, we determined the average localization
error when using un-trained VT (see video) vs. a particle
filter (PF) representing locations in the complete free space
of the environment. The resulting error on the complete
log was 2.34m for VT and 3.78m for PF. This result is ex-
tremely encouraging since it indicates that the projection
onto the Voronoi graph does not only result in a good ap-
proximation of the PF, but yields better performance than
the PF. Figure 3(b) and (c) show typical maximum like-
lihood trajectories using VT and PF, respectively 3. The
graphs clearly demonstrate the superior performance of the
VT technique 4. We also compared the tracking perfor-

3These paths were generated from the trajectory (history) of
the most likely particle at the end of the run. For clarity, only part
of the trajectory is shown

4Please visit www.cs.washington.edu/homes/liaolin
/Research/voronoi tracking.html for videos on using both tech-
niques.

mance for different sample set sizes. The results are given
in Figure 4. It becomes clear that VT makes very efficient
use of particles and it is able to track well using only 200
particles.

Next, we evaluated the learning performance of VT. We
split the complete data log into a training set of 25 minutes
and a test set of 10 minutes. We trained the VT model us-
ing the EM algorithm described in Section 3 on the training
set and determined the tracking error on the test data using
the motion model learned at each iteration. The results are
summarized in Table 1.
As can be seen, the algorithm converges after only 3 it-

EM Iteration Avg. Tracking Error Reduction
Errors (m) after Learning

before learning 2.63 -
1 2.27 13.7%
2 2.05 22.1%
3 1.84 30.0%
4 1.79 31.9%
5 1.76 33.1%

Table 1: Evolution of test error during EM learning.
erations of EM, and using the learned model increases
the tracking accuracy significantly. This shows that the
Voronoi graph is able to extract the correct motion pat-
terns from the training data. This fact is supported by Fig-
ure 3(d), which visualizes the motion model learned after 5
iterations. The model correctly reflects the path and resting
locations of the robot.

5 Conclusions and Future Work
We have presented a novel approach to tracking the loca-
tion of people in indoor environments. The technique is
able to robustly estimate a person’s location even when us-
ing only sparse, noisy information provided by id-sensors.
The key idea of our approach is to use a particle filter that is
projected onto a Voronoi graph of the environment. The re-
sulting model is a two-level technique, where, on the lower
level, the particle filter estimates the location of people
along the continuous edges of the graph. At the next level,
the particles generate transitions on the discrete Voronoi

graph. These two levels are highly connected, since tran-
sitions on the Voronoi graph help to predict the motion of
particles through the graph structure. On the other hand,
particle motion helps to estimate and learn the discrete tran-
sition model of the graph. Learning is achieved by EM,
which concurrently estimates the model parameters at both
levels.

Using data collected by a mobile robot, we demonstrate
that our approach has two key advantages. First, it is by
far more efficient and robust than particle filters which es-
timate the location of people in the complete free space of
an environment. Second, the Voronoi graph provides a nat-
ural discretization of human motion, which allows us to
learn typical motion patterns using expectation maximiza-
tion. We show that the EM-based learning of behavior pat-
terns indeed increases the performance of the approach.

The work presented here is related to tracking a per-
son’s or vehicle’s location using outdoor GPS data. Most
state of the art GPS tracking systems project GPS read-
ings onto graph-based maps describing streets, walkways
etc. Recently, several researchers suggested using Kalman
filters to integrate GPS sensor readings over time [15;
2]. A disadvantage of these approaches is that they only
represent unimodal distributions, which is insufficient for
very noisy sensor information. Furthermore, at vertices
of the Voronoi graph, belief distributions are clearly not
Gaussian and we suspect that even mixtures of Gaussians
are not well suited to represent very uncertain distributions
on Voronoi graphs. We recently applied our technique suc-
cessfully to the task of learning the motion patterns of a
person using data collected by a GPS sensor [11]. For ex-
ample, the approach is able to learn where a person typi-
cally gets on or off a bus.

Despite these very encouraging results, there are still
warrants for future research. First, we will collect long-
term data from people working in the environment. This
data will be used to estimate the parameters of the model
for each person. Long-term data logs will allow us to deter-
mine whether the model is able to detect different motion
patterns for the different people. So far, our Voronoi model
only captures first-order transitions. This can only be the
first step towards high-level pattern learning. For example,
most navigation patterns depend on the time of day and the
(potentially far away) goal of the person and not only on
the previous position. We intend to extend our technique
to hierarchical dynamic Bayesian networks (DBN) [7]. We
expect these networks to be able to use information pro-
vided by the Voronoi graph to learn long term activities at
higher levels of the hierarchy.

Despite these limitations, we believe that this is a first
step towards unsupervised learning of behavior patterns.

Acknowledgments

This work has partly been supported by the NSF under
grant number IIS-0093406, by DARPA’s SDR Programme
(contract NBCHC020073), and the Intel corporation.

References
[1] M. Bennewitz, W. Burgard, and S. Thrun. Using EM to

learn motion behaviors of persons with mobile robots. In
Proc. of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 2002.

[2] P. Bonnifait, P. Bouron, P. Crubillé, and D. Meizel. Data fu-
sion of four ABS sensors and GPS for an enhanced localiza-
tion of car-like vehicles. In Proc. of the IEEE International
Conference on Robotics & Automation, 2001.

[3] H. Choset. Sensor Based Motion Planning: The Hierarchi-
cal Generalized Voronoi Graph. PhD thesis, Caltech, 1996.

[4] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential
Monte Carlo in Practice. Springer-Verlag, New York, 2001.

[5] A. Fod, A. Howard, and M.J. Mataric. Laser-based people
tracking. In Proc. of the IEEE International Conference on
Robotics & Automation, 2002.

[6] D. Fox. Adapting the sample size in particle filters through
KLD-sampling. The International Journal of Robotics Re-
search, 22, 2003.

[7] Z. Ghahramani. Lecture Notes in Artificial Intelligence,
chapter Learning Dynamic Bayesian Networks, pages 168–
197. Springer-Verlag, 1998.

[8] J. Hightower and G. Borriello. Location systems for ubiq-
uitous computing. Computer, 34(8), 2001. IEEE Computer
Society Press.

[9] E. Kruse and F. Wahl. Camera-based monitoring system for
mobile robot guidance. In Proc. of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 1998.

[10] R. Levine and G. Casella. Implementations of the Monte
Carlo EM algorithm. Journal of Computational and Graph-
ical Statistics, 10, 2001.

[11] L. Liao, D. Patterson, D. Fox, and H. Kautz. Inferring high-
level behavior from low-level sensors. In Proc. of the Inter-
national Conference on Ubiquitous Computing, 2003.

[12] L. R. Rabiner. A tutorial on hidden Markov models and
selected applications in speech recognition. In Proceedings
of the IEEE. IEEE, 1989. IEEE Log Number 8825949.

[13] D. Schulz, W. Burgard, and D. Fox. People tracking with
mobile robots using sample-based joint probabilistic data
association filters. International Journal of Robotics Re-
search (IJRR), 22(2), 2003.

[14] R. Simmons and S. Koenig. Probabilistic robot navigation
in partially observable environments. In Proc. of the Inter-
national Joint Conference on Artificial Intelligence, 1995.

[15] R. Thrapp, C. Westbrook, and D. Subramanian. Robust lo-
calization algorithms for an autonomous campus tour guide.
In Proc. of the IEEE International Conference on Robotics
& Automation, 2001.

[16] G. Wei and M.A. Tanner. A Monte Carlo implementation
of the EM algorithm and the poor mans data augmentation
algorithms. Journal of the American Statistical Association,
85, 1990.

